One

Unpleasantness in Vermont

PHINEAS P. GAGE

It is the summer of 1848. We are in New England. Phineas P. Gage, twenty-five years old, construction foreman, is about to go from riches to rags. A century and a half later his downfall will still be quite meaningful.

Gage works for the Rutland & Burlington Railroad and is in charge of a large group of men, a “gang” as it is called, whose job it is to lay down the new tracks for the railroad’s expansion across Vermont. Over the past two weeks the men have worked their way slowly toward the town of Cavendish; they are now at a bank of the Black River. The assignment is anything but easy because of the outcrops of hard rock. Rather than twist and turn the tracks around every escarpment, the strategy is to blast the stone and make way for a straighter and more level path. Gage oversees these tasks and is equal to them in every way. He is five-foot-six and athletic, and his movements are swift and precise. He looks like a young Jimmy Cagney, a Yankee Doodle
dandy dancing his tap shoes over ties and tracks, moving with vigor and grace.

In the eyes of his bosses, however, Gage is more than just another able body. They say he is "the most efficient and capable" man in their employ. This is a good thing, because the job takes as much physical prowess as keen concentration, especially when it comes to preparing the detonations. Several steps have to be followed, in orderly fashion. First, a hole must be drilled in the rock. After it is filled about halfway with explosive powder, a fuse must be inserted, and the powder covered with sand. Then the sand must be "tamped in," or pounded with a careful sequence of strokes from an iron rod. Finally, the fuse must be lit. If all goes well, the powder will explode into the rock; the sand is essential, for without its protection the explosion would be directed away from the rock. The shape of the iron and the way it is played are also important. Gage, who has had an iron manufactured to his specifications, is a virtuoso of this thing.

Now for what is going to happen. It is four-thirty on this hot afternoon. Gage has just put powder and fuse in a hole and told the man who is helping him to cover it with sand. Someone calls from behind, and Gage looks away, over his right shoulder, for only an instant. Distracted, and before his man has poured the sand in, Gage begins tamping the powder directly with the iron bar. In no time he strikes fire in the rock, and the charge blows upward in his face.

The explosion is so brutal that the entire gang freezes on their feet. It takes a few seconds to piece together what is going on. The bang is unusual, and the rock is intact. Also unusual is the whistling sound, as of a rocket hurled at the sky. But this is more than fireworks. It is assault and battery. The iron enters Gage's left cheek, pierces the base of the skull, traverses the front of his brain, and exits at high speed through the top of the head. The rod has landed more than a hundred feet away, covered in blood and brains. Phineas Gage has been thrown to the ground. He is stunned, in the afternoon glow, silent but awake. So are we all, helpless spectators.

"Horrible Accident" will be the predictable headline in the Boston Daily Courier and Daily Journal of September 20, a week later.
"Wonderful Accident" will be the strange headline in the Vermont Mercury of September 22. "Passage of an Iron Rod Through the Head" will be the accurate headline in the Boston Medical and Surgical Journal. From the matter-of-factness with which they tell the story, one would think the writers were familiar with Edgar Allan Poe's accounts of the bizarre and the horrific. And perhaps they were, although this is not likely; Poe's gothic tales are not yet popular, and Poe himself will die the next year, unknown and impecunious. Perhaps the horrible is just in the air.

Noting how surprised people were that Gage was not killed instantly, the Boston medical article documents that "immediately after the explosion the patient was thrown upon his back"; that shortly thereafter he exhibited "a few convulsive motions of the extremities," and "spoke in a few minutes"; that "his men (with whom he was a great favourite) took him in their arms and carried him to the road, only a few rods distant (a rod is equivalent to 5½ yards, or 16½ feet), and sat him into an ox cart, in which he rode, sitting erect, a full three quarters of a mile, to the hotel of Mr. Joseph Adams"; and that Gage "got out of the cart himself, with a little assistance from his men."

Let me introduce Mr. Adams. He is the justice of the peace for Cavendish and the owner of the town's hotel and tavern. He is taller than Gage, twice as round, and as solicitous as his Falstaff shape suggests. He approaches Gage, and immediately has someone call for Dr. John Harlow, one of the town physicians. While they wait, I imagine, he says, "Come, come, Mr. Gage, what have we got here?" and, why not, "My, my, what troubles we've seen." He shakes his head in disbelief and leads Gage to the shady part of the hotel porch, which has been described as a "piazza." That makes it sound grand and spacious and open, and perhaps it is grand and spacious, but it is not open; it is just a porch. And there perhaps Mr. Adams is now giving Phineas Gage lemonade, or maybe cold cider.

An hour has passed since the explosion. The sun is declining and the heat is more bearable. A younger colleague of Dr. Harlow's, Dr. Edward Williams, is arriving. Years later Dr. Williams will describe
the scene: "He at that time was sitting in a chair upon the piazza of Mr. Adams' hotel, in Cavendish. When I drove up, he said, 'Doctor, here is business enough for you.' I first noticed the wound upon the head before I alighted from my carriage, the pulsations of the brain being very distinct; there was also an appearance which, before I examined the head, I could not account for: the top of the head appeared somewhat like an inverted funnel; this was owing, I discovered, to the bone being fractured about the opening for a distance of about two inches in every direction. I ought to have mentioned above that the opening through the skull and integuments was not far from one and a half inch in diameter; the edges of this opening were everted, and the whole wound appeared as if some wedge-shaped body had passed from below upward. Mr. Gage, during the time I was examining this wound, was relating the manner in which he was injured to the bystanders; he talked so rationally and was so willing to answer questions, that I directed my inquiries to him in preference to the men who were with him at the time of the accident, and who were standing about at this time. Mr. G. then related to me some of the circumstances, as he has since done; and I can safely say that neither at that time nor on any subsequent occasion, save once, did I consider him to be other than perfectly rational. The one time to which I allude was about a fortnight after the accident, and then he persisted in calling me John Kirwin; yet he answered all my questions correctly."

The survival is made all the more amazing when one considers the shape and weight of the iron bar. Henry Bigelow, a surgery professor at Harvard, describes the iron so: "The iron which thus traversed the skull weighs thirteen and a quarter pounds. It is three feet seven inches in length, and one and a quarter inches in diameter. The end which entered first is pointed; the taper being seven inches long, and the diameter of the point one quarter of an inch; circumstances to which the patient perhaps owes his life. The iron is unlike any other, and was made by a neighbouring blacksmith to please the fancy of the owner." Gage is serious about his trade and its proper tools. Surviving the explosion with so large a wound to the head, being
me was sitting in a chair upon the piazza of vendish. When I drove up, he said, 'Doctor, for you.' I first noticed the wound upon the forefinger of my carriage, the pulsations of the brain were also an appearance which, before I could not account for: the top of the head an inverted funnel; this was owing, I discovered, about the opening for a distance of a diameter; the edges of this opening were wound appeared as if some wedge-shaped flaw upward. Mr. Gage, during the time I was relating the manner in which he was directed my inquiries to him in preference with him at the time of the accident, and who his time. Mr. G. then related to me some of the he has since done; and I can safely say that on any subsequent occasion, save once, did I other than perfectly rational. The one time to but a fortnight after the accident, and then he John Kirwin; yet he answered all my questions all the more amazing when one considers the iron bar. Henry Bigelow, a surgery professor of the iron so: 'The iron which thus traversed the a quarter pounds. It is three feet seven one and a quarter inches in diameter. The end pointed; the taper being seven inches long, and not one quarter of an inch; circumstances to ps owes his life. The iron is unlike any other, neighbouring blacksmith to please the fancy of various about his trade and its proper tools. iron with so large a wound to the head, being able to talk and walk and remain coherent immediately afterward—this is all surprising. But just as surprising will be Gage's surviving the inevitable infection that is about to take over his wound. Gage's physician, John Harlow, is well aware of the role of disinfection. He does not have the help of antibiotics, but using what chemicals are available he will clean the wound vigorously and regularly, and place the patient in a semi-recumbent position so that drainage will be natural and easy. Gage will develop high fevers and at least one abscess, which Harlow will promptly remove with his scalpel. In the end, Gage's youth and strong constitution will overcome the odds against him, assisted, as Harlow will put it, by divine intervention: 'I dressed him, God healed him.'

Phineas Gage will be pronounced cured in less than two months. Yet this astonishing outcome pales in comparison with the extraordinary turn that Gage's personality is about to undergo. Gage's disposition, his likes and dislikes, his dreams and aspirations are all to change. Gage's body may be alive and well, but there is a new spirit animating it.

GAGE WAS NO LONGER GAGE

Just what exactly happened we can glean today from the account Dr. Harlow prepared twenty years after the accident. It is a trustworthy text, with an abundance of facts and a minimum of interpretation. It makes sense humanly and neurologically, and from it we can piece together not just Gage but his doctor as well. John Harlow had been a schoolteacher before he entered Jefferson Medical College in Philadelphia, and was only a few years into his medical career when he took care of Gage. The case became his life-consuming interest, and I suspect that it made Harlow want to be a scholar, something that may not have been in his plans when he set up his medical practice in Vermont. Treating Gage successfully and reporting the results to his Boston colleagues may have been the shining hours of his career, and he must have been disturbed by the fact that a real cloud hung over Gage's cure.
Harlow’s narrative describes how Gage regained his strength and how his physical recovery was complete. Gage could touch, hear, and see, and was not paralyzed of limb or tongue. He had lost vision in his left eye, but his vision was perfect in the right. He walked firmly, used his hands with dexterity, and had no noticeable difficulty with speech or language. And yet, as Harlow recounts, the “equilibrium or balance, so to speak, between his intellectual faculty and animal propensities” had been destroyed. The changes became apparent as soon as the acute phase of brain injury subsided. He was now “fitful, irreverent, indulging at times in the grossest profanity which was not previously his custom, manifesting but little deference for his fellows, impatient of restraint or advice when it conflicts with his desires, at times pertinaciously obstinate, yet capricious and vacillating, devising many plans of future operation, which are no sooner arranged than they are abandoned. . . . A child in his intellectual capacity and manifestations, he has the animal passions of a strong man.” The foul language was so debased that women were advised not to stay long in his presence, lest their sensibilities be offended. The strongest admonitions from Harlow himself failed to return our survivor to good behavior.

These new personality traits contrasted sharply with the “temperate habits” and “considerable energy of character.” Phineas Gage was known to have possessed before the accident. He had had “a well balanced mind and was looked upon by those who knew him as a shrewd, smart businessman, very energetic and persistent in executing all his plans of action.” There is no doubt that in the context of his job and time, he was successful. So radical was the change in him that friends and acquaintances could hardly recognize the man. They noted sadly that “Gage was no longer Gage.” So different a man was he that his employers would not take him back when he returned to work, for they “considered the change in his mind so marked that they could not give him his place again.” The problem was not lack of physical ability or skill; it was his new character.

The unraveling continued unabated. No longer able to work as a foreman, Gage took jobs on horse farms. One gathers that he
was prone to quit in a capricious fit or be let go because of poor discipline. As Harlow notes, he was good at “always finding something which did not suit him.” Then came his career as a circus attraction. Gage was featured at Barnum’s Museum in New York City, vaingloriously showing his wounds and the tamping iron. (Harlow states that the iron was a constant companion, and points out Gage’s strong attachment to objects and animals, which was new and somewhat out of the ordinary. This trait, what we might call “collector’s behavior,” is something I have seen in patients who have suffered injuries like Gage’s, as well as in autistic individuals.)

Then far more than now, the circus capitalized on nature’s cruelty. The endocrine variety included dwarfs, the fattest woman on earth, the tallest man, the fellow with the largest jaw; the neurological variety included youths with elephant skin, victims of neurofibromatosis—and now Gage. We can imagine him in such company, peddling misery for gold.

Four years after the accident, there was another theatrical coup. Gage left for South America. He may have worked on horse farms, and was a sometime stagecoach driver in Santiago and Valparaíso. Little else is known about his expatriate life except that in 1859 his health was deteriorating.

In 1860, Gage returned to the United States to live with his mother and sister, who had since moved to San Francisco. At first he was employed on a farm in Santa Clara, but he did not stay long. In fact, he moved around, occasionally finding work as a laborer in the area. It is clear that he was not an independent person and that he could not secure the type of steady, remunerative job that he had once held. The end of the fall was nearing.

In my mind is a picture of 1860s San Francisco as a bustling place, full of adventurous entrepreneurs engaged in mining, farming, and shipping. That is where we can find Gage’s mother and sister, the latter married to a prosperous San Francisco merchant (D. D. Shattuck, Esquire), and that is where the old Phineas Gage might have belonged. But that is not where we would find him if we could travel back in time. We would probably find him drinking and brawling in a question-
able district, not conversing with the captains of commerce, as astonished as anybody when the fault would slip and the earth would shake threateningly. He had joined the tableau of dispirited people who, as Nathanael West would put it decades later, and a few hundred miles to the south, “had come to California to die.”

The meager documents available suggest that Gage developed epileptic fits (seizures). The end came on May 21, 1861, after an illness that lasted little more than a day. Gage had a major convulsion which made him lose consciousness. A series of subsequent convulsions, one coming soon on the heels of another, followed. He never regained consciousness. I believe he was the victim of status epilepticus, a condition in which convulsions become nearly continuous and usher in death. He was thirty-eight years old. There was no death notice in the San Francisco newspapers.

WHY PHINEAS GAGE?

Why is this sad story worth telling? What is the possible significance of such a bizarre tale? The answer is simple. While other cases of neurological damage that occurred at about the same time revealed that the brain was the foundation for language, perception, and motor function, and generally provided more conclusive details, Gage’s story hinted at an amazing fact: Somehow, there were systems in the human brain dedicated more to reasoning than to anything else, and in particular to the personal and social dimensions of reasoning. The observance of previously acquired social convention and ethical rules could be lost as a result of brain damage, even when neither basic intellect nor language seemed compromised. Unwittingly, Gage’s example indicated that something in the brain was concerned specifically with unique human properties, among them the ability to anticipate the future and plan accordingly within a complex social environment; the sense of responsibility toward the self and others; and the ability to orchestrate one’s survival deliberately, at the command of one’s free will.

The most striking aspect of this unpleasant story is the discrep-
ancy between the normal personality structure that preceded the accident and the nefarious personality traits that surfaced thereafter—and remained for the rest of Gage’s life. Gage had once known all he needed to know about making choices conducive to his betterment. He had a sense of personal and social responsibility, reflected in the way he had secured advancement in his job, cared for the quality of his work, and attracted the admiration of employers and colleagues. He was well adapted in terms of social convention and appears to have been ethical in his dealings. After the accident, he no longer showed respect for social convention; ethics were violated; the decisions he made did not take into account his best interest, and he was given to invent tales “without any foundation except in his fancy,” in Harlow’s words. There was no evidence of concern about his future, no sign of forethought.

The alterations in Gage’s personality were not subtle. He could not make good choices, and the choices he made were not simply neutral. They were not the reserved or slight decisions of someone whose mind is diminished and who is afraid to act, but were instead actively disadvantageous. Gage worked hard at his downfall. One might venture that either his value system was now different, or, if it was still the same, there was no way in which the old values could influence his decisions. No evidence exists to tell us which is true, yet my investigation of patients with brain damage similar to Phineas Gage’s convinces me that neither explanation captures what really happens in those circumstances. Some part of the value system remains and can be utilized in abstract terms, but it is unconnected to real-life situations. When the Phineas Gages of this world need to operate in reality, the decision-making process is minimally influenced by old knowledge.

Another important aspect of Gage’s story is the discrepancy between the degenerated character and the intactness of the several instruments of mind—attention, perception, memory, language, intelligence. In this type of discrepancy, known in neuropsychology as dissociation, one or more performances within a general profile of operations are at odds with the rest. In Gage’s case the impaired
character was dissociated from the otherwise intact cognition and behavior. In other patients, with lesions elsewhere in the brain, language may be the impaired aspect, while character and all other cognitive aspects remain intact; language is then the "dissociated" ability. Subsequent study of patients similar to Gage has confirmed that his specific dissociation profile occurs consistently.

It must have been hard to believe that the character change would not resolve itself, and at first even Dr. Harlow resisted admitting that the change was permanent. This is understandable, since the most dramatic elements in Gage's story were his very survival, and then his survival without a defect that would more easily meet the eye: paralysis, for example, or a speech defect, or memory loss. Somehow, emphasizing Gage's newly developed social shortcomings smacked of ingratitude to both providence and medicine. By 1868, however, Dr. Harlow was ready to acknowledge the full extent of his patient's personality change.

Gage's survival was duly noted, but with the caution reserved for freakish phenomena. The significance of his behavioral changes was largely lost. There were good reasons for this neglect. Even in the small world of brain science at the time, two camps were beginning to form. One held that psychological functions such as language or memory could never be traced to a particular region of the brain. If one had to accept, reluctantly, that the brain did produce the mind, it did so as a whole and not as a collection of parts with special functions. The other camp held that, on the contrary, the brain did have specialized parts and those parts generated separate mind functions. The rift between the two camps was not merely indicative of the infancy of brain research; the argument endured for another century and, to a certain extent, is still with us today.

Whatever scientific debate Phineas Gage's story elicited, it focused on the issue of localizing language and movement in the brain. The debate never turned to the connection between impaired social conduct and frontal lobe damage. I am reminded here of a saying of Warren McCulloch's: "When I point, look where I point, not at my finger." (McCulloch, a legendary neurophysiologist and a pioneer in
otherwise intact cognition and functions elsewhere in the brain, while character and all other parts of Gage are then the “dissociated” similar to Gage has confirmed occurs consistently.

If the character change would be slow resisted admitting that understandable, since the most is very survival, and then his more easily meet the eye: for memory loss. Somehow, his impairments smacked medicine. By 1868, however, in full extent of his patient’s

...with the caution reserved for this behavioral changes was not this neglect. Even in the two camps were beginning definitions such as language or other region of the brain. If mind produced the mind, it was an obvious that the contrary, the brain did not generated separate mind that was not merely indicative of the mental endurance for another with us today.

...Gage’s story elicited, it followed in movement in the brain. Between impaired social function decided here of a saying of which I point, not at my physiologist and a pioneer in the field that would become computational neuroscience, was also a poet and a prophet. This saying was usually part of a prophecy. Few looked to where Gage was unwittingly pointing. It is of course difficult to imagine anybody in Gage’s day with the knowledge and the courage to look in the proper direction. It was acceptable that the brain sectors whose damage would have caused Gage’s heart to stop pumping and his lungs to stop breathing had not been touched by the iron rod. It was also acceptable that the brain sectors which control wakefulness were far from the iron’s course and were thus spared. It was even acceptable that the injury did not render Gage unconscious for a long period. (The event anticipated what is current knowledge from studies of head injuries: The style of the injury is a critical variable. A severe blow to the head, even if no bone is broken and no weapon penetrates the brain, can cause a major disruption of wakefulness for a long time; the forces unleashed by the blow disorganize brain function profoundly. A penetrating injury in which the pressures are concentrated on a narrow and steady path, rather than dissipate and accelerate the brain against the skull, may cause dysfunction only where brain tissue is actually destroyed, and thus spare brain function elsewhere.) But to understand Gage’s behavioral change would have meant believing that normal social conduct required a particular corresponding brain region, and this concept was far more unthinkable than its equivalent for movement, the senses, or even language.

Gage’s case was used, in fact, by those who did not believe that mind functions could be linked to specific brain areas. They took a cursory view of the medical evidence and claimed that if such a wound as Gage’s could fail to produce paralysis or speech impairments, then it was obvious that neither motor control nor language could be traced to the relatively small brain regions that neurologists had identified as motor and language centers. They argued—in complete error, as we shall see—that Gage’s wound directly damaged those centers.

The British physiologist David Ferrier was one of the few to take the trouble to analyze the findings with competence and wisdom.
Ferrier’s knowledge of other cases of brain lesion with behavioral changes, as well as his own pioneering experiments on electrical stimulation and ablation of the cerebral cortex in animals, had placed him in a unique position to appreciate Harlow’s findings. He concluded that the wound spared motor and language “centers,” that it did damage the part of the brain he himself had called the prefrontal cortex, and that such damage might be related to Gage’s peculiar change in personality, to which Ferrier referred, picturesquely, as “mental degradation.” The only supportive voices Harlow and Ferrier may have heard, in their very separate worlds, came from the followers of phrenology.

An Aside on Phrenology

What came to be known as phrenology began its days as “organology” and was founded by Franz Joseph Gall in the late 1700s. First in Europe, where it enjoyed a succès de scandale in the intellectual circles of Vienna, Weimar, and Paris, and then in America, where it was introduced by Gall’s disciple and onetime friend Johann Caspar Spurzheim, phrenology sailed forth as a curious mixture of early psychology, early neuroscience, and practical philosophy. It had a remarkable influence in science and in the humanities, throughout most of the nineteenth century, although the influence was not widely acknowledged and the influence took care to distance themselves from the movement.

Some of Gall’s ideas are indeed quite astounding for the time. In no uncertain terms he stated that the brain was the organ of the spirit. With no less certitude he asserted that the brain was an aggregate of many organs, each having a specific psychological faculty. Not only did he part company with the favored dualist thinking, which separated biology from mind altogether, but he correctly intuited that there were many parts to this thing called brain, and that there was specialization in terms of the functions played by those parts. The latter was a fabulous intuition since brain specialization is now a well-confirmed fact. Not surprisingly,
other cases of brain lesion with behavioral
abnormalities, the now-pioneering experiments on electrical
stimulation of the cerebral cortex in animals, had
notion to appreciate Harlow's findings. He
understood motor and language "centers," for
part of the brain he himself had called the
what such damage might be related to Gage's
personality, to which Ferrier referred, picture-
scrambled. The only supportive voices Harlow
heard, in their very separate worlds, came from
phrenology.

Phrenology

Phrenology, also known as phrenology, began its days as
an art, as Gall's disciple and one-time
 pupil, Spurzheim, phrenology hailed as a
model for neuroanatomy, early neuroscience, and prac-
ticed. It had a remarkable influence in science and in
throughout most of the nineteenth century, al-
tact was not widely acknowledged and the influ-
tion was difficult to discern from the movement.

The reassessment of a unit is of paramount importance. This is why
throughout this book I will talk so much about neuroanatomy, or
brain anatomy, identify different brain regions, and even ask you to
repeat the mention of their names and the names of other
regions with which they are interconnected. On numerous occasions
I will refer to the presumed function of given brain regions, but such
references should be taken in the context of the systems to which
these regions belong. I am not falling into the phrenological trap.
To put it simply: The mind results from the operation of each of the
separate components, and from the concerted operation of the multi-
ple systems constituted by those separate components.

While we must credit Gall with the concept of brain specialization,
an impressive idea indeed given the scarce knowledge of his time, we
must blame him for the notion of brain "centers" that he inspired.
Brain centers became indelibly associated with "mental functions" in
the work of nineteenth-century neurologists and physiologists. We
also must be critical of various wild claims of phrenology, for instance,
the idea that each separate brain "organ" generated mental faculties
that were proportional to the size of the organ, or that all organs and
faculties were innate. The notion of size as an index of the "power" or "energy" of a given mental faculty is amusingly wrong, although some contemporary neuroscientists have not shied away from using precisely the same notion in their work. The extension of this claim, the one that most undermined phrenology—and that many people think of when they hear the word—was that the organs could be identified from the outside by telltale bumps in the skull. As for the idea that organs and faculties are innate, you can see its influence throughout the nineteenth century, in literature as well as elsewhere; the magnitude of its error will be discussed in chapter 5.

The connection between phrenology and Phineas Gage's story deserves special mention. In his search for evidence about Gage, the psychologist M. B. MacMillan uncovered a lead about one Nelson Sizer, a figure in phrenological circles of the 1800s who lectured in New England and who visited Vermont in the early 1840s, before Gage's accident. Sizer met John Harlow in 1842. In his otherwise rather boring book, "Sizer writes that "Dr. Harlow was then a young physician and assisted as a member of the committee at our lectures on phrenology in 1842." There were several followers of phrenology at medical schools in the eastern United States then, and Harlow was well acquainted with their ideas. He may have heard them speak in Philadelphia, a phrenology haven, or in New Haven or Boston, where Spurzheim had come in 1832, shortly after Gall's death, to be hailed as scientific leader and social sensation. New England dined the hapless Spurzheim to the grave. His premature death came in a matter of weeks, although gratitude followed: the very night of the funeral, the Boston Phrenological Society was founded.

Whether or not Harlow ever heard Spurzheim, it is tantalizing to learn that he had at least one phrenology lesson directly from Nelson Sizer while the latter visited Cavendish (where he stayed—where else—at Mr. Adams's hotel). This influence may well explain Harlow's bold conclusion that Gage's behavioral transformation was due to a specific brain lesion and not to a general reaction to the accident. Intriguingly, Harlow does not rely on phrenology to support his interpretations.

Sizer did come back to Cavendish (and stayed again at Mr. Adams's
hotel—in Gage's recovery room, naturally), and he was well aware of Gage's story. When Sizer wrote his book on phrenology in 1882, Phineas Gage was mentioned: "We perused [Harlow's] history of the case in 1848 with intense and affectionate interest, and also do not forget that the poor patient was quartered at the same hotel and in the same room." Sizer's conclusion was that the iron bar had passed "in the neighborhood of Benevolence and the front part of Veneration." Benevolence and Veneration? Now, Benevolence and Veneration were not sisters in some Carmelite convent. They were phrenological "centers," brain "organs." Benevolence and Veneration gave people proper behavior, kindness and respect for other persons. Armed with this knowledge, you can understand Sizer's final view of Gage: "His organ of Veneration seemed to have been injured, and the profligacy was the probable result." How true!

A LANDMARK BY HINDSIGHT

There is no question that Gage's personality change was caused by a circumscribed brain lesion in a specific site. But that explanation would not be apparent until two decades after the accident, and it became vaguely acceptable only in this century. For a long time, most everybody, John Harlow included, believed that "the portion of the brain traversed, was, for several reasons, the best fitted of any part of the cerebral substance to sustain the injury"; in other words, a part of the brain that did nothing much and was thus expendable. But nothing could be further from the truth, as Harlow himself realized. He wrote in 1868 that Gage's mental recovery "was only partial, his intellectual faculties being decidedly impaired, but not totally lost; nothing like dementia, but they were enfeebled in their manifestations, his mental operations being perfect in kind, but not in degree or quantity." The unintentional message in Gage's case was that observing social convention, behaving ethically, and making decisions advantageous to one's survival and progress require knowledge of rules and strategies and the integrity of specific brain systems. The problem with this message was that it lacked the evidence required
to make it understandable and definitive. Instead the message became a mystery and came down to us as the "enigma" of frontal lobe function. Gage posed more questions than he gave answers.

To begin with, all we knew about Gage's brain lesion was that it was probably in the frontal lobe. That is a bit like saying that Chicago is probably in the United States—accurate but not very specific or helpful. Granted that the damage was likely to involve the frontal lobe, where exactly was it within that region? The left lobe? The right? Both? Somewhere else too? As you will see in the next chapter, new imaging technologies have helped us come up with the answer to this puzzle.

Then there was the nature of Gage's character defect. How did the abnormality develop? The primary cause, sure enough, was a hole in the head, but that just tells why the defect arose, not how. Might a hole anywhere in the frontal lobe have the same result? Whatever the answer, by what plausible means can destruction of a brain region change personality? If there are specific regions in the frontal lobe, what are they made of, and how do they operate in an intact brain? Are they some kind of "center" for social behavior? Are they modules selected in evolution, filled with problem-solving algorithms ready to tell us how to reason and make decisions? How do these modules, if that is what they are, interact with the environment during development to permit normal reasoning and decision making? Or are there in fact no such modules?

What were the mechanisms behind Gage's failure at decision making? It might be that the knowledge required to reason through a problem was destroyed or rendered inaccessible, so that he no longer could decide appropriately. It is possible also that the requisite knowledge remained intact and accessible but the strategies for reasoning were compromised. If this was the case, which reasoning steps were missing? More to the point, which steps are there for those who are allegedly normal? And if we are fortunate enough to glean the nature of some of these steps, what are their neural underpinnings?

Intriguing as all these questions are, they may not be as important
ple and definitive. Instead the message be-
ne down to us as the "enigma" of frontal lobe
more questions than he gave answers.

knew about Gage's brain lesion was that it
oral lobe. That is a bit like saying that Chicago
ed States—accurate but not very specific or
mence was likely to involve the frontal
the within that region? The left lobe? The
else too? As you will see in the next chapter,
es have helped us come up with the answer
ature of Gage's character defect. How did the
primary cause, sure enough, was a hole in
ells why the defect arose, not how. Might a
oral lobe have the same result? Whatever
ausible means can destruction of a brain
ity? If there are specific regions in the frontal
le of, and how do they operate in an intact
and of "center" for social behavior? Are they
olution, filled with problem-solving algo-
how to reason and make decisions? How do
what they are, interact with the environment
mit normal reasoning and decision mak-
ct no such modules?
hanisms behind Gage's failure at decision
the knowledge required to reason through a
rendered inaccessible, so that he no longer
tely. It is possible also that the requisite
ntact and accessible but the strategies for
omised. If this was the case, which reasoning
ore to the point, which steps are there for
ormal? And if we are fortunate enough to
ome of these steps, what are their neural
ure questions are, they may not be as important
as those which surround Gage's status as a human being. May he be
described as having free will? Did he have a sense of right and wrong,
or was he the victim of his new brain design, such that his decisions
were imposed upon him and inevitable? Was he responsible for his
acts? If we rule that he was not, does this tell us something about
responsibility in more general terms? There are many Gages around
us, people whose fall from social grace is disturbingly similar. Some
have brain damage consequent to brain tumors, or head injury, or
other neurological disease. Yet some have had no overt neurological
disease and they still behave like Gage, for reasons having to do with
their brains or with the society into which they were born. We need
to understand the nature of these human beings whose actions can
be destructive to themselves and to others, if we are to solve humane-
ly the problems they pose. Neither incarceration nor the death
penalty—among the responses that society currently offers for those
individuals—contribute to our understanding or solve the problem.
In fact, we should take the question further and inquire about our
own responsibility when we "normal" individuals slip into the irra-
tionality that marked Phineas Gage's great fall.

Gage lost something uniquely human, the ability to plan his future
as a social being. How aware was he of this loss? Might he be
described as self-conscious in the same sense that you and I are? Is it
fair to say that his soul was diminished, or that he had lost his soul?
And if so, what would Descartes have thought had he known about
Gage and had he had the knowledge of neurobiology we now have?
Would he have inquired about Gage's pineal gland?