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Abstract.

The craze for miniaturization
has swept o’er most every nation,
but should a hand e’er so slightly tremble
no micro-machine can it assemble:
and so all those really small bits
leave the technicians in fits
and the hope for a lab on a chip
might seem frightfully flip.

Yet, while optical forces are weak
they provide the control that we seek.
When light’s holographically defined,
HOT opportunities can be mined!
and so this review
contains quite a rich stew,
as we hope that you will soon find.

So dinnae fear phase modulation
nor the details of plane conjugation:
it’s simple, you’ll see,
we’ll guide you for free,
to make optical landscapes extended,
so your science can truly be splendid.
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1. Background

All around the world there are hobbyists and collectors who take great pride in

the workmanship put into miniaturizations, producing small train sets with clear

windows and seats in the cars, tiny buildings with working doors and detailed interiors.

Clearly though, as the size is further reduced, model building becomes more and

more a painstaking task, and we are all the more in awe of what has been produced.

Ultimately, as we move towards the microscopic scale, we find that we can no longer

use, for the creation and assembly of machines – or even simple static structures – the

same approaches that we would naturally use on the macroscopic scale: entirely new

techniques are needed.

Luckily, Newton’s second law dictates that as the mass of the object involved is

reduced (as we shrink the size of our components), then a correspondingly weaker force

will suffice for a given, desired acceleration. So, while we would not think to use light to

assemble the engine of a train, it turns out that optical forces are not only sufficient for

configuring basic micro-machines, but that the optical fields required can be arrayed in

ways that offer up the possibility of complex system integration (with much greater ease

than, say, magnetic fields). Indeed, within clear constraints, optics provides a natural

interface with the microscopic world, allowing for imaging, interrogation and control.

There is no doubt that these are powerful technologies. Optical forces have

convincingly been calibrated [1] down to 25 fN, and recent efforts have similarly extended

the range of optical torque calibration [2]. Careful studies of the optical torques exerted

upon micro-scale components [3, 4, 5, 6], provided a much clearer understanding of

wave-based spin and orbital angular momentum (both optical [7, 8] and, by extension

and analogy, the quantum mechanical angular momentum of electrons in atoms). This

work clearly deserves a place in the standard canon of the physics curriculum. As for the

science that has resulted from the use of optical forces, consider the experiments done

by Steven Block’s group at Stanford, whose apparatus (using 1064-nm light) now has

a resolution of order the Bohr radius (!!) and who have used this exquisitely developed

technique to directly observe the details of error correction in RNA transcription of

DNA [9], a true tour de force. Another prime example might be the results from the

Carlos Bustamante group at Berkeley, whose experimental confirmations [10, 11] of new

fluctuation theorems have allowed recovery of RNA folding free energies, a key feat,

given that biomolecular transitions of this sort occur under nonequilibrium conditions

and involve significant hysteresis effects that had previously been taken to preclude any

possibility of extracting such equilibrium information from experimental data. In fact,

work now being done on fluctuation theorems (both theoretically and experimentally)

is among the most significant in statistical mechanics in the past two decades. These

theorems have great general importance, and include extension of the Second Law of

Thermodynamics into the realm of micro-machines and biomolecules. Clearly such work

opens up vast new intellectual opportunities.
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2. Example rationale for constructing extended arrays of traps

For some while now there have been available basic optical techniques used to manipulate

one or two microscopic objects at a time, but the focus of this review is upon recently

emerging technical means for creating arrays of optical traps. The statistical nature

of the experiments described above – which involve samples that are in the diffusive

limit, where Brownian motion is significant – suggests that there might be a significant

benefit to simultaneously conducting an array of optical trap experiments, by creating

independent sets of traps across the experimental field of view.

At the same time, the very issue of whether or not such an array of experiments

may be treated independently points also towards an altogether different class of studies,

aimed at either probing or exploiting the wide array of physical mechanisms that might

serve to couple spatially separated components. For example, biological studies of cell-

cell signaling change character when, instead of dealing with a pair of cells isolated from

all others, one deals with an ensemble, as this changes the conditions required for quorum

sensing. In such cases, the use of an array of optical traps can ensure well-controlled,

reproducible ensembles for systematic studies. As a specific instance, the early stages

of biofilm formation are studied using various mutant strains of bacteria, with different

biofilm-related genes deleted [12]; here, optical trap arrays are used to ensure geometric

consistency from ensemble to ensemble. In fact, quite a wide variety of many-body

problems are amenable to study using trap arrays [13, 14, 15, 16, 17, 18, 19].

It should be added that optical trap arrays determine not only the equilibrium

structures that assemble, but also the dynamics of particles passing through the lattices

[20, 21, 22, 23]: the flow of those particles that are influenced most by optical forces

tends to be channelled along crystallographic directions in a periodic trap array (often

referred to as an optical lattice). In such a lattice, the magnitude of the optical forces is

an oscillatory function of particle size [24], which means that it is possible to tune the

lattice constant so as to make any given particle type either strongly interacting with the

light or essentially non-interacting [25]. Therefore, it is possible to perform all-optical

sorting of biological/colloidal suspensions and emulsions [24] and strong claims have

been made as to the size selectivity associated with this type of separation technology

[26]. In any case, this approach does allow massively parallel processing of the particles

to be sorted, and so the throughput can be much higher than with active microfluidic

sorting technologies (e.g., Ref. [27], where particles are analyzed one by one and then a

deflection control decision is based upon feedback from that analysis). Moreover, while

the laser power delivered to the optical lattice may be, in total, significant, the intensity

integrated over each biological cell can be a fraction of what is used in conventional

optical tweezers, so all-optical sorting does relatively little to stress the extracted cells

[28]. There remain many opportunities for studies of colloidal traffic through both static

and dynamic optical lattices [29, 30], and real potential for the use of optical trap arrays

in microfluidic, lab-on-a-chip technologies.

While trap arrays have been put to a number of good uses in microfluidics (e.g., for
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multipoint micro-scale velocimetry [31]), it bears repeating that optical forces are, in the

end, still relatively weak, and so for some purposes it would be reasonable to combine

the use of optical forces (to allow sophisticated, integrated assembly of components)

with the use of other forces for actuation. That said, the use of optical forces does allow

for construction of simple micro-machines: components may be separated or brought

together (even allowing ship-in-a-bottle-type assembly, e.g., of axel-less micro-cogs in a

microfluidic chamber [32]), oriented (e.g., for lock-and-key assembly of parts), and even

actuated.

Here, we have mentioned only a few of the many reasons one might be interested

in constructing extended arrays of traps. Clearly, this is a field where a number of

new applications are expected to emerge over the coming years. Our next task, then,

is to describe in detail some of the techniques used for generation – and dynamic

reconfiguration, in three dimensions – of optical trap arrays.

Before going on, though, we should note that the holographic techniques we describe

are not limited to array formation, but also enhance the sorts of control one can exert

over a single trap, through their ability to shape the optical fields in three dimensions;

e.g., to create an optical bottle beam [33, 34], or even arrays of bottle beams [35]. A

bottle beam is akin to a bubble of light (a dark region of space completely enclosed by a

skin of high intensity fields), and is intended for trapping cold atom clouds (“The Atom

Motel ... where atoms check in but they don’t check out!”).

3. Experimental details

3.1. The standard optical train

The majority of experiments involving optical traps use the single-beam gradient

trap geometry [36] (referred to as optical tweezers), and we will focus upon this particular

sort of setup. The most important details of experimental realizations of optical tweezers

are discussed elsewhere, for example Ref. [37], but for our purposes it is sufficient to note

that in optical tweezers, the laser is very tightly focused, producing strong gradients in

the optical fields in the region surrounding the focal spot, and an associated dipole

force on polarizable media in that region. This dipole force, which is usually called the

gradient force, dominates over radiation pressure for the sorts of samples usually studied

with this technique.

There are alternative trapping geometries that may be desired. For gold

nanoparticles and for transmissive particles with an index of refraction much higher than

that of the surrounding medium, radiation pressure is significant. A counterpropagating

beam trap is strongly preferred over optical tweezers in those instances [38, 39]. While

a significant radiation pressure would tend to knock particles out of optical tweezers,

radiation pressure actually plays a helpful role in both counterpropagating beam traps

and in levitation traps [40], each of which is seeing a resurgence in the literature.

Figure 1 shows a schematic representation of a standard holographic optical
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Figure 1. Simplified standard holographic optical tweezers (HOT) setup. The beam
from a laser is widened in a beam telescope and illuminates a spatial light modulator
(SLM). The first-order diffracted beam is collected by the Fourier lens; as the SLM is
positioned in the front focal plane of the Fourier lens, the complex amplitude in the
back focal plane, F , is the Fourier transform of the complex amplitude in the SLM
plane. The remaining combination of lenses, usually including a microscope objective,
images the beam in the Fourier plane into the central trapping plane, P , which is
usually chosen to be in a liquid-filled sample chamber.

tweezers (HOT) setup. Beginning at the laser, we first have a beam-expanding telescope,

so that the beam fills the holographic element, which is shown here as a reflective,

programmable spatial light modulator (SLM) but may be replaced with any (reflective

or transmissive) diffractive optical element (DOE). The size of the illuminating Gaussian

beam is a compromise between power efficiency and resolution: On the one hand, the

larger the beam, the better use it makes of the area of the SLM, which in turn means

higher resolution of the resulting light pattern in the trapping plane. On the other

hand, if the Gaussian beam illuminating the SLM is too large, a fraction of the incident

power misses the active area of the SLM and is therefore either lost or goes into the

zeroth order. The standard compromise is a beam diameter that is roughly matched to

that of the SLM. But it is not only for the sake of improved efficiency that the beam

diameter is matched to that of the holographic element: when an SLM is used any

significant incident beam power must be distributed, so as to avoid boiling the liquid-

crystal active element, permanently destroying the device. Following the SLM, there

is a second telescope, which ensures that the beam diameter is appropriate given the

diameter of the back aperture of the lens to be used for tweezing (usually a standard

microscope objective lens).

In practice, the two lenses comprising this second telescope are separated by the

sum of their focal lengths; the SLM is separated from the first lens in that telescope,

the Fourier lens, by the focal length of that lens, and the second lens in the telescope

is separated by its own focal length from the back aperture of the objective. In this

way, this second telescope actually serves four separate roles. First, it adjusts the

beam diameter so as to fill the entrance pupil (i.e., the back aperture) of the objective
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lens. Second, as the placement of the SLM is equivalent to that of the steering mirror

in conventional optical tweezers, the telescope projects the hologram onto the back

aperture of the objective lens, thereby ensuring that any beam deflections created by

the hologram do not cause the beam to walk off of the entrance pupil of the objective lens.

Third, the fact that the hologram and the back aperture of the objective are conjugate

image planes also creates a simple relationship between the beam at the output of the

hologram and the beam in the focal plane, P : the beam’s complex amplitude in the

trapping plane is the Fourier transform of that in the SLM plane. Fourth, because the

telescope used is Keplerian, rather than Galilean, the amount of real estate taken up on

the optical table is somewhat greater, but the benefit that comes with this cost is that

it allows for spatial filtering to be done in the plane labeled F in Figure 1. Plane F is

conjugate to the focal plane P , so an enlarged image of the trapping pattern is there,

where it may be manipulated [41]. (Commonly, a spot block is introduced at plane F ,

to remove the undeflected, zeroth-order spot. An alternative is to add a blazing to the

hologram, shifting the desired output pattern array away from the zeroth order, with

all subsequent optics aligned along the path of the centroid of the first-order beamlets.)

In optical tweezers, the strong field gradient along the direction of propagation is

produced by the peripheral rays in the tightly focused beam, and not by those rays along

the optic axis. For that reason, it is essential to use a final, tweezing lens with a high

numerical aperture (NA), and to ensure that the input beam delivers significant power

to those peripheral rays. Therefore, a simple telescope is usually used to match the

beam diameter to that of the entrance pupil (back aperture) of a high-NA microscope

objective or, in the case of a Gaussian beam, where the intensity of peripheral rays is

weak, to slightly overfill the back aperture of the objective. (Excessive overfilling simply

throws away light that would otherwise go towards the desired mechanical effect, and

also produces an undesired Airy pattern around each trap site created.)

It should be noted that the original work using holographic methods for optical

trapping did not require that the DOE be projected onto the back focal plane of the

tweezing lens. Fournier et al. [42, 43] simply illuminated a binary phase hologram

with a quasi-plane wave which, through Fresnel diffraction, generates self-images of the

grating in planes that are periodically positioned along the direction of propagation (a

phenomenon known as the Talbot effect). Already in 1995, very strong trapping of 3-

micron spheres was observed in these Talbot planes, and the means of creating a variety

of lattices was discussed. In their 1998 paper, Fournier et al. also proposed the use of

programmable “spatial light modulators to obtain a time-dependent optical potential

that can be easily monitored.” Fresnel holographic optical trapping is now seeing a

revival for use in holographic optical trapping [44], for the generation of large, periodic

array structures. The first demonstration of sorting on an optical lattice [24] used a

DOE that was conjugate to the image plane, rather than the Fourier plane. Because

of this conjugacy condition, the use of a fan-out DOE results in the convergence of

multiple beams in the trapping volume, and the associated formation of an interference

pattern. This setup can produce high-quality 3D arrays of traps over a large region
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of space, which can be tuned in ways that include the lattice constant, the lattice

envelope, and the degree of connectivity between trap sites [45]. That said, compared

to Fresnel holographic optical trapping, the Fourier-plane holography that we describe

here offers a number of benefits, e.g. the ability to fully utilize such trade-offs as, for

example, restricting the area in the trapping-plane over which the beam is shaped in

order to gain resolution [46]. Moreover, generating a 3D array of traps intended to

deflect the flow of particles passing through (i.e., optical sorting) is less of a challenge

than filling a 3D array of traps so as to create a static structure: in the latter case,

particles filling traps in each layer perturb the optical fields in all subsequent layers.

Direct manipulation of the beam’s Fourier-space properties can allow the creation of

optical fields in the trapping volume that are self-healing (or self-reconstructing) in a

number of arbitrarily chosen directions [47], a significant feature for the generation of

some types of 3D filled arrays. Primarily, though, the benefits of Fourier-plane HOTs

are the ability to generate generalized arrays without any special requirements regarding

symmetry, and the ability to provide flexible, highly precise individual trap positioning

[48].

Also in 1995, the group of Heckenberg and Rubinsztein-Dunlop at the University of

Queensland produced phase-modulating holograms for mode-conversion of conventional

optical tweezers into traps capable of transmitting orbital angular momentum [3].

Because the Laguerre-Gaussian modes utilized are structurally stable solutions of the

Helmholtz equation, the DOE/SLM need not be positioned in any particular plane, and

so this work in Australia, which is compatible with Fourier-plane holographic trapping,

established (along with work in Scotland [5]) the techniques that are still in use today

for the generation of traps carrying optical angular momentum.

The basic optical train shown in Figure 1, projecting the hologram onto the back

focal plane of a microscope objective, was first demonstrated (using a pre-fabricated,

commercial DOE) at the end of the decade, in 1998 [49], with a description of the most

common algorithm for creating tailored holograms for optical trapping following in 2001

[50] and again in 2002 [51]. In this work, and in much of what has followed, it is assumed

that the phase-modulating hologram will be positioned as we have described, so that the

complex amplitude in the DOE/SLM plane and the complex amplitude in the central

trapping plane form a Fourier-transform pair. With this relationship established, the

complex amplitude distribution in one plane can be calculated very efficiently from the

other using a Fast Fourier Transform [52].

Given this simple relationship, it may seem surprising that there is any need to

discuss algorithms at all: given a desired intensity distribution in the focal plane of the

microscope objective one need only take the inverse Fourier transform to determine the

appropriate hologram – but the result of that simple operation would be a hologram that

modulates both the phase and amplitude of the input beam. The required amplitude

modulation would remove power from the beam, with catastrophic consequences for the

efficiency in many cases. If, then, for the sake of efficiency, we constrain the hologram

to phase-only modulation, there is usually not any analytical solution that will yield the
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desired intensity distribution in the trapping plane.

Some of the required phase modulations are obvious. The simplest DOE would be

a blazed diffraction grating, which is the DOE equivalent of a prism, and the Fresnel

lens, which is the DOE equivalent of a lens. With these basic elements, we see that we

can move the optical trap sideways (with the blazing), but also in and out of the focal

plane (with the Fresnel lens), and by superposition of such gratings and lenses we can

create multiple foci, which can be moved and, through the addition of further phase

modulation, even be shaped individually [51].

Clearly we are not limited to a superposition of gratings and lenses. Because a

standard HOT setup has holographic control over the field in the trapping plane, it can

shape not only the intensity of the light field but also its phase. For example, there are

very simple holograms that turn individual traps into optical vortices – that is, bright

rings with a phase gradient around the ring. Because light will repel particles with a

lower index of refraction than the surrounding medium, holographically produced arrays

of vortex beams can be used to trap and create ordered arrays of low-index particles [53].

Other simple holograms can create non-diffracting and self-healing (over a finite range)

Bessel beams [54, 55] (though holographic generation of Bessel beams is not compatible

with Fourier-plane placement of the DOE). Still, in all of the cases described above, the

phase profile required for the DOE is something you could guess, with good results.

However, while it is possible to intuit a phase modulation that will form extended

periodic structures [56], matters become much more complex when considering arbitrary

arrangements of particles, and the simplest guesses do not always yield the best results,

as is shown in Section 4. Luckily, as we will describe in detail, the quality of the trap

array can be greatly improved through the selection of an optimized iterative algorithm,

though what might be optimal within the context of a particular experiment may involve

trade-offs in terms of efficiency and computational speed.

3.1.1. The diffractive optical element or spatial light modulator. In this section we

discuss the sorts of physical specifications which are required of the diffractive optical

element to be used for the generation of optical traps. This DOE can either be static

(etched in glass or, inexpensively, stamped into plastic), but is often in the reconfigurable

form of a phase-only spatial light modulator (SLM) – a phase hologram under real-time

computer control.

A discussion of the issues involved in lithographically manufactured DOE, such

as the influence of the number of phase levels created and of surface roughness upon

the resulting trap array, is contained in Ref. [50]. A sense of these issues may be

gained by noting that while the light intensity directed to each spot in a 10× 10 array

was predicted to vary by ±10% for a binary DOE (given the specific algorithm used

to calculate them), in an actual experiment it varied by ±23%, with the additional

variation attributed to manufacturing defects associated with the process of etching the

phase modulation profile into glass [57]. As more phase levels are added, the lithographic

challenges increase (though, with careful alignment, 2N phase levels can be created by
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N etch steps). The greater the extent of the array, the more sensitive the uniformity of

trap intensity becomes to fabrication errors.

Although holograms etched into glass clearly produce static images, one can rapidly

raster the laser between a tiled array of such holograms, thereby producing a dynamic

hologram with a refresh rate limited only by the speed of rastering. However, because of

the heightened opportunity for real-time reconfiguration and optimization, our emphasis

here will be upon the special case where the DOE is a programmable SLM.

There are various types of SLMs [58]: they can, for example, be divided according

to which aspect of light they modulate, which mechanism they use to do this, or

whether they work in reflection or in transmission. Most HOTs use phase-only, liquid-

crystal (LC), reflective SLMs: phase-only because of the efficiency advantage mentioned

in section 3.1; liquid crystal because of the cheap availability and maturity of this

technology; and reflective because of a speed (and efficiency) advantage (the switching

time depends upon the thickness of the liquid-crystal layer, which can be halved for

reflective devices).

The LC character of most SLMs used in HOTs determines many of their properties.

We will discuss here a few of these; more detailed discussions can be found, for example,

in Ref. [59]. They work by applying locally defined voltages to an array of areas spread

across a LC layer. The liquid crystal molecules re-align themselves in response to the

voltage, thereby changing their optical properties. In parallel-aligned nematic liquid

crystals, for example, they tilt relative to the substrate [59]. LC SLMs were first used

as holograms after correction of thickness nonuniformities [60]. Nowadays a number

of different models are commercially available, for example from Boulder Nonlinear

Systems [61], Holoeye Photonics AG [62], and Hamamatsu [63].

Liquid-crystal-based SLMs use either nematic or ferroelectric liquid crystals.

Nematic SLMs offer a large number of phase levels (typically 256, though the sigmoidal

grayscale-to-phase-level function of some of these systems compresses the number of

useful levels to a number well below the nominal rating), but are slow (in practice, an

update rate for a Near-IR nematic SLM would typically be 20 Hz or less). Ferroelectric

SLMs have only two phase levels (phase shift 0 and π), which limits the choice of

algorithms for the calculation of the hologram patterns and the diffraction efficiency

(by always creating a symmetric -1st order of the same brightness as the +1st order)

[64]. On the other hand, with update rates of typically tens of kilohertz, ferroelectric

SLMs are significantly faster. While nematic SLMs are the usual choice, ferroelectric

SLMs [65, 66] have also been used in HOTs [64, 67].

The maximum phase delay a LC SLM can introduce grows with the thickness of its

LC layer. Depending on the LC-layer thickness, a LC SLM has a maximum wavelength

for which it can achieve a full 2π phase delay; this is often taken as the upper limit of

an SLM’s specified wavelength working range. On the other hand, the response time is

proportional to the square of the LC layer’s thickness [68]. Again, in reflective SLMs,

light passes through the LC layer twice, halving the required thickness.

Due to lack of surface flatness, reflective SLMs usually aberrate the light beam more
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than transmissive SLMs. Like the spherical aberration introduced by the objective, this

can deteriorate the quality of the traps and limit the trapping range [37]. Aberrations

in the flatness of the SLM can – together with other aberrations in the optics – be

corrected by displaying a suitable phase hologram on the SLM [69, 70, 71, 72]. This is

perhaps not surprising, as SLMs are also used in other adaptive-optics systems [73, 69].

Commercial LC SLMs are either optically (Hamamatsu) or electrically (Boulder,

Holoeye) addressed. Electronically addressed SLMs contain (square or rectangular)

pixels, with a small gap – and associated dead area – between pixels. The convolution

theorem dictates that the field in the SLM’s Fourier plane (the trapping plane) is the

Fourier transform of the field of coherent point light sources centered in each pixel (the

phase and intensity is that of the pixel), multiplied by the Fourier transform of the field

of a single, centered, pixel. The first term (the Fourier transform of the point light

sources) is periodic in x and y. The copies of the central field are essentially diffraction

orders of the grating formed by the point light sources. The second term (the Fourier

transform of a single pixel) is usually close to a sinc function in x and y (whereby the sinc

function gets wider when the pixel gets narrower, and vice versa), which means that the

intensity of the field in the Fourier plane falls off to zero at the nodes of the sinc function.

This limits the power that is wasted into higher diffraction orders. By optimizing the

pixel shape, the power diffracted into higher grating orders can be further reduced. This

is essentially what is happening in the optically addressed SLMs by Hamamatsu, where

a “write light” pattern produced with the help of a pixelated liquid-crystal display is

projected onto a photoconductive layer. The projected pattern is slightly out of focus,

resulting in an image consisting of pixels with smoothed edges. The photoconductive

layer controls the voltage across the LC layer, which modulates the phase of “readout

light” passing through it. The resulting phase modulation is such that diffraction into

the higher grating orders is almost completely suppressed.

It should once again be noted that a light beam with too much power can destroy a

LC SLM, by boiling the liquid crystal. This limits the number of optical traps that has

been achieved with LC-SLM-based, Fourier-plane HOTs to ≈ 200 [74], a limit which

can perhaps be overcome by using cooled SLMs, SLMs with a larger area over which

the beam’s power can be distributed, or other types of SLMs, for example deformable

mirrors [75].

4. Algorithms for holographic optical traps

The intensity distribution usually required in HOTs consists of a set of diffraction-limited

bright spots surrounded by darkness. There are algorithms for specialized applications

that require other light distributions, which we briefly review in section 4.9. Our main

emphasis, however, is on reviewing the algorithms that are presently available for optical

trapping using the standard optical train described in section 3.1, discussing both why

and how they work. Closely following Ref. [76], we compare algorithm performance

in terms of efficiency, that is fraction of overall power in the traps, and uniformity, a
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measure of how evenly power is distributed between the different traps, for a 10 × 10

array of traps in the Fourier plane, created using an SLM with 768× 768 pixels and 256

(8 bit) phase levels under uniform illumination.

Some of the algorithms we review here are fast and therefore particularly well suited

to interactive use (e.g. Ref. [77]); other algorithms create better traps. The two classes

are somewhat mutually exclusive, sometimes so much so that when a higher degree of

control in trap intensities is required holograms calculated prior to the experiment are

used. This is the case when, for example, one requires a set of traps with uniform (or

precisely controlled) potential well depths, or when ghost traps cannot be tolerated (for

example when they prevent filling of the intended trapping sites).

ff ff

z

M
L

S

y

jth pixel:
(x

j
, y

j
, 0)

mth trap:
(x

m
, y

m
, z

m
)

Fo
u

ri
er

 p
la

n
e

Figure 2. Geometry of pixel and trap positions relative to the (effective) Fourier lens’s
focal planes. The transverse position of the jth pixel in the SLM plane is (xj , yj), the
position of the mth trap relative to the centre of the Fourier plane is (xm, ym, zm). x
and y are the two transverse coordinates, z is the longitudinal coordinate.

All the algorithms reviewed here utilize the phase shifts ∆m
j picked up by the light

(of wavelength λ) as it travels from pixel j to trap m. These phase shifts can be

calculated as follows. The complex amplitude of the electric field at the jth pixel is

uj = |u| exp(iφj), (1)

where φj is the corresponding phase shift. We can use scalar diffraction theory to

propagate the complex electric field from the jth pixel to the location of the mth trap

in the image space [78]. Summing up the contributions from all of the N pixels we

obtain the complex amplitude vm of the electric field at the position of trap m,

vm ∝
∑

j=1,N

|u| exp(i(φj −∆m
j )). (2)

The phase shifts ∆m
j are given by

∆m
j =

πzm

λf 2
(x2

j + y2
j ) +

2π

λf
(xjxm + yjym), (3)
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where xj,yj are the jth SLM pixel’s coordinates (projected into the back focal plane of

the objective) and xm, ym, zm are the mth trap’s coordinates relative to the the centre

of the Fourier plane (Fig. 2).

These propagation phase shifts can be used to calculate a hologram pattern that

creates a single focus at the position of the mth trap: by choosing the phase φj at each

pixel to cancel out the phase shift as the light propagates from pixel j to trap m, that

is for φj = ∆m
j for all pixels (j = 1, .., N), the contribution from all pixels interferes

constructively at the position of trap m. We call this choice of hologram pattern the

single mth trap hologram.

The normalized field at trap m is given by the equation

Vm =
N∑

j=1

1

N
exp(i(φj −∆m

j )); (4)

its modulus squared is the normalized intensity at trap m, that is

Im = |Vm|2. (5)

For the single mth trap hologram, all terms in the sum (4) are real and equal to 1/N ,

so Im = |Vm|2 = 1.

algorithm e u σ(%) K scaling

RM 0.01 (0.07) 0.58 (0.79) 16 (13) 1 (1) N

S 0.29 (0.69) 0.01(0.52) 257(40) 1 (1) N ×M
SR 0.69 (0.72) 0.01 (0.57) 89 (28) 1 (1) N ×M
GS 0.94 (0.92) 0.60 (0.75) 17 (14) 30 (30) K ×N ×M
AA 0.93 (0.92) 0.79 (0.88) 9 (6) 30 (30) K ×N ×M
DS 0.68 (0.67) 1.00 (1.00) 0 (0) 7.5× 105 (1.7× 105) K × P ×M

GSW 0.93 (0.93) 0.99 (0.99) 1 (1) 30 (30) K ×N ×M

Table 1. Summary of the theoretical performance of some algorithms for shaping of a
highly symmetric 2D and a less symmetric 3D structure (in brackets). The algorithms
are random-mask encoding (RM), superposition (S), random superposition (SR),
Gerchberg-Saxton (GS), adaptive-additive (AA), direct search (DS), and weighted
Gerchberg-Saxton (GSW). The 2D target trap structure is a 10 × 10 square grid of
bright spots, the 3D target structure consists of 18 traps located on the sites of a
diamond-lattice unit cell. The efficiency, e, and uniformity measures, u and σ, are
calculated after K iterations. The right-most column refers to computational cost
scaling, where M is the number of traps, N is the number of pixels in the hologram,
and P is the number of gray levels (256 here). (From Ref. [76].)

The performance of different algorithms is quantified by three measures: efficiency

(e), uniformity (u) and percent standard deviation (σ, another measure of how equal

power is distributed between different traps):

e =
∑
m

Im, u = 1− max[Im]−min[Im]

max[Im] + min[Im]
, σ =

√
〈(I − 〈I〉)2〉/〈I〉. (6)
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〈..〉 denotes the average over all trap indices, m. Table 1 summarizes the results

of the performed benchmark test on the highly symmetric, 2-dimensional, 10 × 10

square target grid mentioned above, and on a less symmetric, 3-dimensional, target

structure. It demonstrates that many algorithms – most notably the superposition

algorithms, but also random-mask encoding and the Gerchberg-Saxton and adaptive-

additive algorithms, but not direct search and the weighted Gerchberg-Saxton algorithm

– give worse uniformity for symmetric patterns. It also demonstrates the huge differences

in the number of iterations different algorithms require to reach a good hologram, and

how the computational cost scales with various parameters. For most applications, the

recent weighted Gerchberg-Saxton algorithm appears to be a good choice.

4.1. Random mask encoding

One approach for creating more than one trap which is particularly appealing by virtue of

its simplicity and speed is random mask encoding [79]. In the single-mth-trap hologram

all SLM pixel phases are chosen to be ∆m
j , thereby cancelling out the propagation phase

shifts between all pixels and the mth trap, so that the contributions from all pixels

interfere constructively at the trap position. In random-mask encoding, for each SLM

pixel, say pixel number j, the index m of a trap is randomly chosen, and the SLM pixel

phase is set to the corresponding propagation phase shift ∆m
j :

φj = ∆
mj

j , (7)

where mj is a number between 1 and M randomly chosen for each j. The contributions

from the fraction of pixels that displays the propagation phase shift corresponding to

trap m, and therefore the corresponding fraction of the light illuminating the SLM, then

interferes constructively at the position of trapm; the contributions from the other pixels

similarly interfere constructively at the positions of the other traps.

The technique is very fast, and performs remarkably well as far as uniformity is

concerned. However, the overall efficiency can be very low when M is large. In fact,

on average, for each m only N/M pixels will interfere constructively, all the others

giving a vanishing contribution. Therefore |Vm|2 ' 1/M2 and e ' 1/M , which can be

significantly smaller than one when M is large. In our benchmark case, where M = 100,

Ref. [76] numerically obtained u = 0.58 but e = 0.01 = 1/M .

Still, random-mask encoding is particularly useful to quickly generate either one or

a few additional traps on top of a complex light structure obtained via a pre-calculated

hologram. Such “helper tweezers” are useful for filling in the pre-calculated array of

traps, allowing the user to interactively trap, drag and drop initially free particles into

the desired locations. For such purposes, a fraction of the SLM pixels can be randomly

chosen and temporarily used to display the “service-trap” hologram.
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4.2. Superposition algorithms

The field immediately after the SLM displaying a single mth trap hologram is given by

uj = |u| exp(i∆m
j ). As discussed above, this field leads to a bright spot at the position

of the mth trap. If the superposition, or complex sum, of the fields due to several mth

trap holograms could be created, it would give bright spots at several trap positions.

However, this superposition field cannot easily be created with a phase-only SLM: the

intensity immediately after the SLM is simply not that of the superposition field.

Superposition algorithms ignore this intensity mismatch and use the phase pattern

of the superposition field as the phase-hologram pattern, so [80, 81]

φj = arg

(∑
m

exp(i∆m
j )

)
. (8)

This algorithm has been called “superposition of prisms and lenses” (SPL) [76]. It

is slower than random-mask encoding (due to the extra N arg function evaluations),

but produces useful light distributions with reasonable efficiencies but very poor

uniformities. In our benchmark case, the efficiency is e = 0.29 and the uniformity

is u = 0.01. Moreover, a significant part of the energy is diverted to unwanted ghost

traps; this happens particularly in highly symmetrical trap geometries [82].

The algorithm described above is actually just the simplest superposition algorithm.

It can be improved if we add random phases θm (uniformly distributed in [0, 2π) to each

single trap hologram, and therefore to each trap. The phase of SLM pixel j then becomes

φj = arg

(∑
m

exp(i(∆m
j + θm))

)
. (9)

This algorithm, usually called Random Superposition [83], has the same computational

cost as the SPL algorithm, produced similar uniformity but much better efficiency in

our benchmark case (e = 0.69, u = 0.01).

When dealing with low-symmetry geometries, holograms calculated using

superposition algorithms can also produce good uniformity levels and no further

refinement is needed. If precise trap positioning is not an issue one can even deliberately

reduce the pattern symmetry by adding a small amount of random displacement to trap

locations, as demonstrated in Ref. [82].

Although slower than random-mask encoding, the computational speed of

superposition algorithms still allows for interactive manipulation. They can be speeded

up further by computing the hologram using a computer’s Graphic Processing Unit

(GPU) for both computational and rendering tasks [100]. As the entire hologram is

continuously recalculated, superposition algorithms are usually preferred to random-

mask encoding for interactive applications requiring dynamic deformation of the entire

trapping pattern.
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4.3. Gerchberg-Saxton algorithm

The Gerchberg-Saxton algorithm [83, 84, 85, 86, 87, 88] was developed by the

crystallographers Ralph Gerchberg and Owen Saxton to infer an electron beam’s phase

distribution in a transverse plane, given the intensity distributions in two planes. It can

also be applied to light, specifically to find a phase distribution that turns a given input

intensity distribution arriving at the SLM plane into a desired intensity distribution

in the trapping plane. In the Gerchberg-Saxton algorithm the complex amplitude is

propagated back and forth between the two planes, replace the intensity in the trapping

plane with the target intensity and that in the SLM plane with the illuminating laser

beam’s actual intensity profile.

The algorithm can be extended to 3D trap geometries where multiple planes are

considered for forward propagation. The back-propagated field is then obtained as

the complex sum of the corrected and back-propagated fields from the target planes.

Generalization to full 3D shaping [89, 90] is currently far too slow for interactive use

(taking days to calculate the desired phase modulation).

In the original implementation, forward and backward propagation were performed

with Fast Fourier Transforms (FFTs). However, when the target intensity is an array

of bright spots surrounded by darkness, it is not necessary to calculate the complex

field in points whose intensity will be replaced by zero before back propagation. The

FFT has also the drawback of discretizing the transverse coordinates of traps. A much

faster and more versatile implementation of the Gerchberg-Saxton algorithm for HOTs

only computes the field at the trap locations. This is exactly what equation (4) does,

which calculates the fields Vm at the trap positions from the SLM phases, φj. By

weighting the contribution from each SLM pixel with the same factor, 1/N , equation

(4) also effectively replaces the intensity distribution in the SLM plane with the uniform

intensity distribution of the illuminating laser beam. (This can, of course, easily be

generalized to non-uniform illumination intensities.) A phase-hologram pattern that

takes into account the phases of the field at the trap locations can then be calculated

using a superposition algorithm in which the single-trap holograms are superposed with

the relative phase of the corresponding trap,

θm = arg(Vm), (10)

using equation (9). Like all algorithms that incorporate the superposition algorithm,

the Gerchberg-Saxton algorithm can be speeded up by using the computer’s graphic

processing unit [100]. One iteration of this optimized Gerchberg-Saxton algorithm

[91, 92] then consists of the successive application of equations (4), (10), and (9).

It converges after a few tens of iterations. After thirty iterations, Ref. [76] obtained

e = 0.94 and u = 0.60 for our benchmark case.
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4.4. Adaptive-additive algorithm

It can be shown mathematically that the Gerchberg-Saxton algorithm maximizes the

sum of the amplitudes of Vm,
∑

m |Vm|. It therefore has no bias towards uniformity [76].

It is possible to modify this algorithms so that it maximizes other quantities, resulting

in a bias towards uniformity. The most important example is the maximization of the

function (1− ξ)
∑

m |Vm|+ ξ
∑

m log |Vm|, in which the strength of the uniformity bias is

controlled by the parameter ξ. This leads to the generalized adaptive-additive algorithm

[50, 51], in which the calculation of the phase hologram is performed according to

φj = arg

[∑
m

exp(i(∆m
j + θm))

(
1− ξ +

ξ

|Vm|

)]
(11)

instead of equation (9). The generalized adaptive-additive algorithm includes the

Gerchberg-Saxton algorithm as the special case ξ = 0. For ξ > 0, it yields improved

uniformity when compared to the Gerchberg-Saxton algorithm. For ξ = 0.5, for

example, the uniformity is u = 0.79 and efficiency e = 0.93 for the benchmark case.

4.5. Curtis-Koss-Grier algorithm

The adaptive-additive algorithms in Ref. [51] contains further, very useful,

generalizations. By subtracting “kernel phases” κm
j in the calculation of the field at

the trap positions, that is by using

Vm =
N∑

j=1

1

N
exp(i(φj − κj −∆m

j )) (12)

instead of equation (4), and by adding κj again in the calculation of the phase hologram,

that is by using

φj = arg

[∑
m

exp(i(κm
j + ∆m

j + θm))

(
1− ξ +

ξ

|Vm|

)]
(13)

instead of equation (11), the foci corresponding to the traps can be individually shaped.

For example, the choice

κm
j = `ϕj, (14)

where ϕj is the azimuthal angle (in radians) of pixel j with respect to the center of the

SLM and ` is an integer, turns the focal spot at the position of trap m into an optical

vortex of charge `. This very popular and versatile algorithm is sometimes called the

Curtis-Koss-Grier algorithm. For our benchmark case, it produces the same results as

the adaptive-additive algorithm.

4.6. Weighted Gerchberg-Saxton algorithm

Another variation of the Gerchberg-Saxton algorithm that is biased very strongly

towards a uniform distribution of the intensity in the different traps has been derived
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by introducing the M additional degrees of freedom wm and maximizing the weighted

sum
∑

mwm|Vm| with the constraint that all |Vm|s are all equal. In the corresponding

variation of the Gerchberg-Saxton algorithm, the weights for the current (kth) iteration,

wk
m, are calculated from those for the previous ((k − 1)th) iteration, w

(k−1)
m , according

to

wk
m = w(k−1)

m

〈|V k−1
m |〉
|V k−1

m |
, (15)

before the phase hologram is calculated using

φj = arg

[∑
m

wk
m exp(i(∆m

j + θm))

]
. (16)

One iteration of this algorithm, called the Weighted Gerchberg-Saxton Algorithm

[76], comprises successive application of equations (4), (10), (15) and (16). The

algorithm converges with a speed typical of the Gerchberg-Saxton and Adaptive-

Additive algorithms.

In the benchmark case, and starting from a random-superposition phase hologram

(φj calculated according to equation (9)) and setting all initial weights to 1 (w0
m = 1), the

Weighted Gerchberg-Saxton Algorithm produces a hologram having the almost optimal

performance of e = 0.93, u = 0.99 [76].

4.7. Direct search

Direct-search algorithms make direct use of the possibility of computers to try out a

vast number of different holograms in the search for the best one. The first direct-search

algorithm [93] defined an error between the target intensity pattern and the intensity

pattern that was calculated to result from a specific hologram. Starting with a random

binary intensity hologram, it then changed the intensity of the first pixel, compared the

errors corresponding to the unchanged and changed holograms, and kept the hologram

with the lower corresponding error. Starting with this kept hologram, it then altered

the intensity of all pixels in lexicographic order (line by line), after each change keeping

the better hologram. When the last pixel was reached, the algorithm altered the first

pixel again and so on.

Most direct-search algorithms are slight variations on this original algorithm.

Firstly, they do not alter pixels in lexicographic order, but in random order. Exhaustive

random order – making sure that all pixels are visited once during each “round of

iterations” before any pixel is re-visited – is most efficient [94]. Secondly, unlike the

original algorithm they usually deal with more than one available phase or intensity level.

There are different optimization strategies for that case: some algorithms compare the

error of the original hologram with that of one hologram in which the intensity (or phase)

has been randomly altered, keeping the better hologram; other algorithms compare the

original hologram with the holograms in which the randomly selected pixel takes on

all possible values. We concentrate here on the latter strategy. Thirdly, the choice of

the error function (or cost function) which is minimized – or, alternatively, of a quality
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function which is maximized – depends on exactly what it is to be achieved, and many

possibilities have been implemented. For the purposes of benchmarking, we follow Refs.

[95, 96, 76] and concentrate here on a quality function that is a linear combination of

the efficiency metric e and the uniformity metric σ, namely

e/M − fσ, (17)

where f is a factor that allows their relative importance to be adjusted.

The benchmark algorithm starts from an initial hologram obtained from the

random-superposition algorithm. It picks one pixel at random, cycles through all the

P = 256 phase levels, and then sets the pixel phase to the one that gives the highest

quality function. As suggested in Ref. [96], for f = 0.5, the algorithm achieves a perfect

uniformity (u = 1.00) after 1.3N steps, with the computational cost scaling as M × P ,

although the overall efficiency is diminished to e = 0.68. Better holograms can be

obtained by giving more bias to efficiency (e.g. f = 0.25) and waiting for a substantially

longer time (≈ 10N steps – that is, about a hundred times longer than GS), whereby

this number of iterations can be decreased with only a moderate performance decrease

by reducing the number of gray levels, P [95]. With eight “greyscale” phase levels and

all other parameters set as before, Ref. [76] obtained e = 0.84 and u = 1.00 after 7 N

steps (that is, about three times longer than GS).

4.8. Simulated annealing

A number of articles on holographic optical tweezers refer to simulated annealing

(usually together with genetic algorithms) as some sort of last-ditch attempt towards

achieving the best possible hologram.

Direct-search algorithms always move towards better holograms. In the

corresponding quality-function landscape they always move upwards, which makes such

algorithms vulnerable towards being caught in local maxima of the quality function.

Simulated annealing [97, 98], also known as the Metropolis algorithm, is an optimization

strategy that attempts to simulated the characteristics of the process of crystallization

of a slowly cooled liquid that results in a perfect crystal – the lowest-energy state. It

was first applied to holography in Ref. [99].

Simulated-annealing algorithms tend to measure the quality of a hologram in terms

of its energy – the (dimensionless) cost function, re-named to emphasize the analogy with

crystallization. Like direct-search algorithms, simulated-annealing algorithms always

accept energy decreases. Unlike direct-search algorithms, however, they sometimes

accept energy increases (and therefore decreases in quality), whereby the probability

of accepting an energy increase ∆E is given by

exp(−∆E/T ). (18)

The temperature T (also dimensionless) is lowered while the algorithm is running,

whereby the “annealing schedule” – the choice of the initial temperature, and the way
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in which it is lowered – requires experimentation to achieve a good result in a reasonable

number of iterations.

Simulated annealing is a trade-off between the time it takes to run the algorithm

and the quality of the resulting hologram. This is again analogous to crystallization of a

cooling liquid: if a liquid metal is cooled too quickly (or “quenched”), it does not reach

the lowest-energy state but a higher-energy, polycrystalline or amorphous, state [98].

Simulated annealing is therefore not suitable for interactive use, but is the algorithm of

choice if the best hologram quality is required and calculation speed is not an issue.

4.9. Algorithms for specialized applications

Gabe’s section: vortices, vortex arrays, shaped vortices, lines (Bessel beams), ...

5. Alternative means of creating extended optical potential energy

landscapes

Large arrays of optical traps can be generated in several ways. While holographic optical

tweezers are very flexible, there are situations where alternative approaches might be

considered.

For example, multi-beam interference is simple, produces high-quality optical

lattices over extended 3D volumes, and can tolerate high beam powers. Extensive work

on laser-induced freezing and other novel phase transitions has utilized this approach

[13, 19]. Burns et al. used the standing optical field resulting from the interference of

several beams to trap polystyrene spheres, thereby producing a 2D colloidal crystal,

and to propose the existence of optically-mediated particle-particle interactions in this

system (optical binding) [101, 102]. However, such approaches are limited to symmetric

patterns.

Alternatively, galvan mirrors [103] or piezoelectrics [37, 104] have served as the basis

for designs involving scanning laser tweezers. These approaches are briefly summarized

in Section 5.0.1. Another – SLM-based – strategy that allows flexible generation of

trap arrays uses the Generalized Phase Contrast (GPC) method. In addition, arrays

covering large areas have now been produced using evanescent waves. In the remainder

of Section 5 we discuss these promising alternative techniques.

5.0.1. Time-sharing of traps. For generating a simple, smooth potential, such as a

ring trap, the use of analog galvo-driven mirrors might be preferred over either HOTs or

acousto-optic deflectors (AODs). Coupled with an electro-optical modulator, this can

yield smoothly varying intensity modulations in a continuous optical potential [105, 106].

Galvo systems provide much higher throughput of the incident light than either AODs

or Fourier-plane HOTs, and have been put to good use in many experiments (e.g.,

the Bechinger group uses galvo-driven mirrors to create simple optical “corrals” that
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controllably adjust the density of 2D colloidal ensembles). However, inertia limits the

scan speed of any macroscopic mirror to a fraction of what is available via AODs.

Acousto-optic deflectors are simply another class of reconfigurable diffractive optic

element, one which is limited to simple blazings, but which has a much higher refresh

rate: AODs can be scanned at hundreds of kilohertz, repositioning the laser on such

a short time scale that, under some circumstances, the trapped particles experience

only a time-averaged potential. This short time constant allows for the creation of

multiple “time-shared” traps using AOD deflection of the same (first-order) diffraction

spot [107, 108].

In order for each trapped particle to feel only the time-averaged potential, the

maximal time that the laser can spend away from any one trap would be something like

a tenth of the time scale set by the corner frequency in the power spectrum of particle

displacements. The inverse of this corner frequency indicates, essentially, the time it

takes the particle to diffuse across the trap. The smaller the particle, the shorter this

time scale becomes. Less viscous environments also present challenging time scales: for

aerosols, the corner frequency can be 2 kHz even for an 8-micron sphere [109]. Because

of these high corner frequencies, it could be a challenge to use AODs to generate large

arrays in such samples and, indeed, HOT-based array generation has been preferred

for such work [110]. It should be emphasized that, for any type of sample, “while

the laser’s away, the beads will stray!” That is, over a time interval t when the laser

is elsewhere (at other trap sites, or traveling between traps), a microbead will diffuse

away from its nominal trap site, a distance d =
√

2Dt. For a 1-micron diameter bead in

water, the diffusion coefficient is D = kBT/6πηr = 0.4µm2/s. So if the laser is absent

for 25 microseconds, the bead is expected to diffuse 5nm. Clearly, smaller spheres

would diffuse further during the same time and, even for micron-scale spheres, as the

number of trapping sites increases, the demand for speed from all components of the

control system (both hardware and software) becomes significant. This, coupled with

the requirement that the laser spend sufficient time at each trap site to produce the

time-averaged power required for the desired trap strength and the fact that while trap

strength depends only on the time-average power, sample damage due to two-photon

absorption and local heating contain a dependence upon the peak power [111], represents

a maximum limit to both the type of arrays that can be constructed and the accuracy

to which the spheres can be positioned when using time-shared trapping.

That said, impressive results have been obtained. A 20 × 20, two-dimensional

array of traps was constructed and (mostly) filled with 1.4µm silica spheres, by the van

Blaaderen group [112]. Moreover, by physically splitting the beam and creating two

optical paths with offset image planes, the van Blaaderen group was able to make small

arrays of traps in two separate planes. Because nearly all of the colloidal particles in

their sample were index-matched to the surrounding medium, they were able to tweeze

a dilute concentration of non-index-matched tracer particles, so as to controllably seed

nucleation of 3D order in a concentrated colloidal sample [112], and used fluorescent

confocal microscopy to image the results. Primarily, though, work utilizing AODs has
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been limited to the generation of 2D arrays of traps.

For experiments involving just one or two spheres, the positioning resolution of

AODs driven by low-jitter digital frequency synthesizers cannot be beaten. It is not

unheard of for such systems to claim a positioning resolution of less than one-tenth of

a nanometer though, at this level, the accuracy of positioning is not only affected by

diffusion of the particle in the optical trap, but also by the pointing stability of the

trapping laser, and by hysteresis and drift of the sample stage and of the objective lens.

There are a number of technical points to be aware of. For analog AOD systems there

can remain problems with “ghost traps” (as the beam is often sequentially repositioned

in x and then in y, so the generation of two traps along the diagonal of a square yields

an unintended spot at one of the other corners). Moreover, because the AOD efficiency

falls off as a function of the deflection angle, for applications requiring uniform arrays,

one must compensate, either by spending more time at peripheral traps or by increasing

the power sent to those traps. If such steps are taken, AODs offer good trap uniformity,

precise positioning in 2D, and fast updates. Also, in some sense, AOD-generated arrays

can be thought of as being made of incoherent light (different beams do not interfere,

being present only one at a time).

More details, including references, can be found in Ref. [37]. For generating arrays

of traps using AODs, pages 2964-2965 of our Ref. [112] clearly and concisely describe

many of the relevant parameters that must be considered.

Unlike the SLM-based techniques, AOD-based systems cannot normally do mode

conversion, aberration correction, or generate arrays of traps dispersed in 3D.

5.0.2. Generalized phase-contrast method. Frits Zernike won the 1953 Nobel Prize

for developing an imaging technique that could turn a phase modulation caused by

a transparent sample (e.g., a biological cell) into an intensity modulation at the plane

of a camera or the eye. While Zernike’s approach was valid for weak phase modulation,

workers at Risø National Laboratory in Denmark have created a Generalized Phase-

Contrast technique (GPC) which provides a very nice, simple method for using the

SLM to produce arbitrary, user-defined arrays of traps in 2D [113], but which can also

be made to work in 3D [114, 115].

In the GPC approach, the SLM is conjugate to the trapping plane, and no

computations are required in order to convert the phase-only modulation of the SLM

into an intensity modulation in the image plane; instead there is a direct, one-to-one

correspondence between the phase pattern displayed on the SLM and the intensity

pattern created in the trapping plane. In the Fourier plane, a small π-phase filter shifts

focused light coming from the SLM so that at the image plane it will interfere with a

plane-wave component. The result is a system that only requires the user to write their

desired 2D patterns on the SLM. The downside to this is that xy positions are limited

to pixel positions, meaning that ultra-high-precision trap positioning is not possible

to the degree it is with the other techniques we have described. Also, beam-shaping

Fourier-holography tricks are not applicable to the GPC approach.
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Extension of the GPC method to 3D requires the use of counterpropagating beam

traps, rather than optical tweezers, and so three-dimensional control is, in some sense,

more involved. For this reason the Risø team has developed an automated alignment

protocol [116] for users interested in 3D control. It is not possible to controllably place

traps behind each other with this method, but there have now been many impressive

demonstrations of 3D manipulation using the GPC technique.

Notably, in this “imaging mode,” the SLM efficiency is much higher, providing a

throughput of up to 90% of the light, as there is no speckle noise and no diffraction

losses (i.e., there are no ghost orders; there is no zero-order beam) [117]. The version of

GPC using counterpropagating beam traps can also use low-NA optics, which can have

a large field of view, and a large Rayleigh range. So, while Fourier-plane holographic

optical traps can provide only a small range of axial displacements, limited by spherical

aberration, the low-NA GPC trap arrays are sometimes called “optical elevators”

because of the large range over which the traps can be displaced along the optic axis.

Moreover, the working distance can be up to one centimeter, which is 100 times that

of a conventional optical tweezers setup. This long working distance even makes it

possible to image the trapped structure from the side [118]. Because no immersion fluid

is required for low-NA imaging optics, one could imagine performing experiments using

this approach in extreme environments, such as vacuum or zero gravity. That said, the

use of a high-NA, oil-immersion trapping lens is necessary in order to provide high trap

stiffness along the axial direction.

5.0.3. Evanescent-wave optical trap arrays. Evanescent fields hold promise for future

generation of trap arrays, primarily for two reasons. One is not subject to the free-

space diffraction limit, and can therefore create significantly sub-wavelength structures

in the optical fields. Also, it has been shown that patterned evanescent fields can create

large numbers of traps spanning macroscopically large areas [119]. Interestingly, in an

unpatterned, but resonantly enhanced, evanescent field, arrays of trapped particles have

recently been observed to self-organize, due to the onset of nonlinear optical phenomena

(optical solitons) [120]. Several schemes have been proposed for holographic control of

evanescent fields, and a tailored algorithm for doing this sort of light shaping has recently

appeared [121].

The disadvantages of evanescent fields are that one must obviously work very close

to the surface, create patterns using only the range of incident angles beyond the critical

angle for total internal reflection, and allow for the strong variation in penetration depth

as a function of incident angle (which, on the other hand, allows 3D shaping of the

evanescent field [121]). Taken together, these necessarily constrain the shapes that can

be holographically achieved in the near field, and clearly require the development of

specialized algorithms.
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6. The future of holographic optical tweezers

Good, fast algorithms currently exist for Fourier-plane holographic optical tweezers

consisting of arbitrary 3D trap configurations. Already, today, HOTs can be bought

commercially [74]. A number of researchers have begun to use HOTs as the centerpiece

of integrated biophotonic workstations [122, 123, 124]. With the capability of doing

holographic work established, it is reasonable to combine HOTs with digital holographic

microscopy [125, 126, 127]. Moreover, as the traps are already under computer control, it

is relatively easy to combine HOTs with pattern recognition to automate particle capture

and sorting [128], and to trigger key events, localized in space and time, in systems near

instabilities [129]. Related techniques are also undergoing significant development. So,

while a great deal of science has been accomplished with one or two point-like traps,

there clearly remains enormous potential associated with extended arrays of optical

traps.
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[55] V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia. Simultaneous
micromanipulation in multiple planes using a self-reconstructing light beam. Nature, 419:145–
147, 2002.

[56] L. Z. Cai, X. L. Yang, and Y. R. Wang. All fourteen Bravais lattices can be formed by interference
of four noncoplanar beams. Opt. Lett., 27(11):900–902, Jun 2002.

[57] P. T. Korda. Kinetics of Brownian particles driven through periodic potential energy landscapes.



Holographic optical tweezers 26

PhD thesis, University of Chicago, 2002.
[58] J. A. Neff, R. A. Athale, and S. H. Lee. Two-dimensional spatial light modulators: a tutorial.

Proc. IEEE, 78(5):826–855, 1990.
[59] Yasunori Igasaki, Fanghong Li, Narihiro Yoshida, Haruyoshi Toyoda, Takashi Inoue, Naohisa

Mukohzaka, Yuji Kobayashi, and Tsutomu Hara. High efficiency electrically-addressable phase-
only spatial light modulator. Opt. Rev., 6:339–344, 1999.

[60] Fai Mok, Joseph Diep, Hua-Kuang Liu, and Demetri Psaltis. Real-time computer-generated
hologram by means of liquid-crystal television spatial light modulator. Opt. Lett., 11:748–750,
1986.

[61] Boulder Nonlinear Systems. Spatial Light Modulators. http://www.bouldernonlinear.com/products/XYphaseFlat/XYphaseFlat.htm,
2007.

[62] HOLOEYE Photonics AG. Spatial Light Modulator. http://www.holoeye.com/spatial light modulators-
technology.html, 2007.

[63] Hamamatsu Corporation. Programmable Phase Modulator.
http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/spatial-light-
modulator.php, 2007.

[64] William Hossack, Eirini Theofanidou, Jason Crain, Kevin Heggarty, and Martin Birch. High-
speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay. Opt.
Express, 11:2053–2059, 2003.

[65] G. Moddel, K. M. Johnson, W. Li, R. A. Rice, L. A. Pagano-Stauffer, and M. A. Handschy.
High-speed binary optically addressed spatial light modulator. Appl. Phys. Lett., 55(6):537–
539, 1989.

[66] L. K. Cotter, T. J. Drabik, R. J. Dillon, and M. A. Handschy. Ferroelectric-liquid-crystal/silicon-
integrated-circuit spatial light modulator. Opt. Lett., 15:291, 1990.

[67] A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read. Time-multiplexed laguerre-
gaussian holographic optical tweezers for biological applications. Opt. Express, 14:3065–3072,
2006.

[68] Jun Amako and Tomio Sonehara. Kinoform using an electrically controlled birefringent liquid-
crystal spatial light modulator. Appl. Opt., 30:4622–, 1991.

[69] Gordon D. Love. Wave-front correction and production of zernike modes with a liquid-crystal
spatial light modulator. Appl. Opt., 36:1517–1520, 1997.

[70] Yael Roichman, Alex Waldron, Emily Gardel, and David G. Grier. Optical traps with geometric
aberrations. Appl. Opt., 45:3425–3429, 2006.

[71] Kurt D. Wulff, Daniel G. Cole, Robert L. Clark, Roberto Di Leonardo, Jonathan Leach, Jon
Cooper, Graham Gibson, and Miles J. Padgett. Aberration correction in holographic optical
tweezers. Opt. Express, 14:4170–4175, 2006.

[72] A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte.
Wavefront correction of spatial light modulators using an optical vortex image. Opt. Express,
15(9):5801–5808, 2007.

[73] Thomas R. O’Meara and Phillip V. Mitchell. Continuously operated spatial light modulator
apparatus and method for adaptive optics. U. S. Patent 5,396,364, 1995.

[74] Arryx, Inc. http://www.arryx.com/, 2007.
[75] T. Ota, S. Kawata, T. Sugiura, M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson. Dynamic
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